
Definite Clause Grammars

Paul Bailey
paulba@dai.ed.ac.uk
Room F12, 80 South Bridge

Division of Informatics
University of Edinburgh

Contents

• Definite Clause Grammars

• Grammar rules

• Terminals and non-terminals

• Grammar rules in Prolog

• How Prolog uses grammar rules

• A very simple grammar

• Adding arguments

• Adding Prolog goals

Definite Clause Grammars

• Prolog provides some built-in facilities for defining
grammars.

• A grammaris a precise definition of which sequences of
words or symbols belong to somelanguage.

• In Prolog, these grammars are calledDefinite Clause
Grammars(DCGs).

• Grammars are particularly useful for natural language
processing, which is the computational processing of
human languages, like English.

• But they can be used to process any precisely defined
’language’, such as the commands allowed in some
human-computer interface.

“Definite Clause Grammars”, Division of Informatics, Term 1, 2001–2002 2

Grammar rules

• In general, a grammar is defined as a collection of
grammar rules. These are sometimes calledrewrite rules,
since they show how we can rewrite one thing as
something else.

• In linguistics, a typical grammar rule for English might
look like this:

sentence → noun phrase, verb phrase

• This would show that, in English, asentencecould be
constructed as anoun phrase, followed by averb phrase.

• Other rules would then define how a noun phrase, and a
verb phrase, might be constructed. For example:

noun phrase → noun
noun phrase → determiner, noun
verb phrase → intransitive verb
verb phrase → transitive verb, noun phrase

“Definite Clause Grammars”, Division of Informatics, Term 1, 2001–2002 3

Terminals and non-terminals

• In these rules, symbols likesentence, noun, verb, etc., are
used to show the structure of the language, but they don’t
go as far down as individual ‘words’ in the language.

• Such symbols are callednon-terminal symbols, because
we can’t stop there.

• In defining grammar rules fornoun, though, we might be
able to say:

noun → ‘ball’
noun → ‘dog’
noun → ‘stick’
noun → ‘Edinburgh’

• Here, ‘ball’, ‘dog’, ‘stick’ and ‘Edinburgh’ are words in
the language itself.

• These are called theterminal symbols, because we can’t
go any further. They can’t be expanded any more.

“Definite Clause Grammars”, Division of Informatics, Term 1, 2001–2002 4

Grammar rules in Prolog

• Grammar rules look very similar to this in Prolog.

• In place of the→ arrow, we have a special operator:--> .

• So, we might write the same rules as:

sentence --> noun phrase, verb phrase.
noun phrase --> noun.
noun phrase --> determiner, noun.
verb phrase --> intransitive verb.
verb phrase --> transitive verb, noun phrase.

• Here, each non-terminal symbol is like a predicate with no
arguments.

• Terminal symbols are represented as lists:

noun --> [ball].
noun --> [dog].
noun --> [stick].
noun --> [’Edinburgh’].

“Definite Clause Grammars”, Division of Informatics, Term 1, 2001–2002 5

How Prolog uses grammar rules

• DCG rules look a lot like conventional Prolog clauses,
with a left-hand side, and a right-hand side.

• In fact, Prolog converts DCG rules into an internal
representation which makes them conventional Prolog
clauses.

• Non-terminals are given two extra arguments, so:

sentence --> noun phrase, verb phrase.

becomes:

sentence(In, Out) :-
noun phrase(In, Temp),
verb phrase(Temp, Out).

• This means: some sequence of symbolsIn , can be
recognised as a sentence, leavingOut as a remainder, if a
noun phrase can be found at the start ofIn , leavingTemp
as a remainder, then a verb phrase can be found at the start
of Temp, leavingOut as a remainder.

“Definite Clause Grammars”, Division of Informatics, Term 1, 2001–2002 6

How Prolog uses grammar rules (2)

• Terminal symbols are represented using the special
predicate’C’ , which has three arguments. So:

noun --> [ball].

becomes:

noun(In, Out) :-
’C’(In, ball, Out).

• This means: some sequence of symbolsIn can be
recognised as a noun, leavingOut as a remainder, if the
atomball can be found at the start of that sequence,
leavingOut as a remainder.

• The built-in predicate’C’ is very simply defined:

’C’([Term|List], Term, List).

where it succeeds if its second argument is the head of its
first argument, and the third argument is the remainder.

“Definite Clause Grammars”, Division of Informatics, Term 1, 2001–2002 7

A very simple grammar

• Here’s a very simple little grammar, which defines a very
simple language:

sentence --> noun, verb phrase.
verb phrase --> verb, noun.

noun --> [paul].
noun --> [david].
noun --> [annie].

verb --> [likes].
verb --> [hates].
verb --> [defenestrates].

• We can now use the grammar to test whether some
sequence of symbolsbelongs tothe language:

| ?- sentence([paul, likes, annie], []).
yes

| ?- sentence([paul, likes, teaching, iaip], []).
no

“Definite Clause Grammars”, Division of Informatics, Term 1, 2001–2002 8

A very simple grammar (2)

• We might even use the grammar to generate all of the
possible sentences in the language:

| ?- sentence(X, []).

X = [paul,likes,paul] ? ;
X = [paul,likes,david] ? ;
X = [paul,likes,annie] ? ;
X = [paul,hates,paul] ? ;
X = [paul,hates,david] ? ;

and so on.

• What we’ve implemented here is arecogniser. It will tell
us whether some sequence of symbols is in a language or
not. This has limited usefulness.

• It would be much more useful if we coulddostuff with a
sequence of symbols, such as converting it into some
internal form for processing, or converting it into another
form, say for language translation.

• We can do this very powerfully with DCGs, by building a
parser, rather than a recogniser.

“Definite Clause Grammars”, Division of Informatics, Term 1, 2001–2002 9

Adding arguments

• We can add our own arguments to the non-terminals in
DCG rules, for whatever reasons we choose.

• As an example, in English, thenumber(singular or plural)
of the subject of a sentence and thenumberof the main
verb must agree. We can add this constraint to a grammar
very easily:

sentence --> noun(Num), verb phrase(Num).
verb phrase(Num) --> verb(Num), noun().

noun(singular) --> [paul].
noun(plural) --> [students].

verb(singular) --> [likes].
verb(plural) --> [like].

• So now:
| ?- sentence([paul, likes, students], []).
yes
| ?- sentence([paul, like, students], []).
no
| ?- sentence([students, like, paul], []).
yes
| ?- sentence([students, likes, paul], []).
no

“Definite Clause Grammars”, Division of Informatics, Term 1, 2001–2002 10

Adding Prolog goals

• If we need to, we can add arbitrary Prolog goals to any
DCG rule.

• They need to be put inside{} brackets, so that Prolog
knows they’re to be processed as Prolog, and not as part of
the DCG itself.

• Let’s say that within some grammar, we wanted to be able
to say that some symbol had to be an integer between 1
and 100 inclusive. Wecouldwrite a separate rule for each
number:

num1to100 --> [1].
num1to100 --> [2].
num1to100 --> [3].
num1to100 --> [4].
...
num1to100 --> [100].

• But using a Prolog goal, there’s a much easier way:

num1to100 --> [X], {integer(X), X >= 1, X =< 100 }.

“Definite Clause Grammars”, Division of Informatics, Term 1, 2001–2002 11

