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Neural computation
To understand how our brain actually works

Its network reminds the style of parallel computation with adaptive 
connections

Solve problems by using algorithms inspired by the brain



Cortical neuron
Axon that sends messages to other neurons.

Dendritric tree which receives messages 
from other neurons.

A connection between an axon and a dendritric tree is termed synapse.

Axon hillock is an event where an electric charge flow gets through a synapse 
and depolarizes the cell membrane, thus making the axon generate outgoing 
spikes.



Cortical neuron
In this way each neuron receives inputs from other neurons, whose outputs 
are weighted by a synaptic weight.

The weight is determined by transmitter chemicals. They differ in shape and 
bind to the post-synaptic neuron, creating holes in the membrane.

These holes determine specific ions to flow, making the synapses to adapt. 
They are very slow commuting devices compared to transistors, but have 
other advantages.

Computation is made possible thanks to 10^11 neurons and 10^4 weights er 
neuron each of us has in the brain



Cortical neuron
The cortex has a general purpose structure, with the ability to specialize 
   to ad-hoc configurations for particular tasks, in response to experience

Rapid parallel computation happens when the net has learnt, while 
mantaining its inner flexibility.

Quite like an FPGA, where generic hardware elements are built and one 
defines which particular circuit configuration should be implemented, 
according to a specific netlist that usually is synthesized automatically



Linear models of artificial neurons
Simple but limited 
idealized example.

The model represents the 
transfer function of the 
artificial neuron.



Binary threshold neurons
If the weighted sum of the 
inputs exceeds a given 
threshold,  the neuron sends 
out a 1 or otherwise a 0. 

Also called Heaviside step 
function. This model is also 
termed activation function of 
the artificial neuron.



Multilayer perceptron
Differentiable nonlinear activation function.

The purpose of the activation function is to introduce non-linearity into the 
network, allowing the model to exhibit a non-linear behavior.

Input,output, hidden layers.

An input vector it is propagated forward through the network, layer by layer.

The network exhibits a high degree of connectivity.



Multilayer perceptron



Neural networks
“A neural network is a massively parallel distributed processor made up of 
simple processing units that has a natural propensity for storing experiential 
knowledge and making it available for use” (Neural Networks and Learning Machines,Simon O. Haykin)

Neural networks resemble the style of the human brain, which is very 
different from sequential computation. 



Multilayer perceptron
First, the presence of a distributed form of nonlinearity and the high 
connectivity of the network make the theoretical analysis of a multilayer 
perceptron difficult to undertake. 

Second, the use of hidden neurons makes the learning process harder to 
visualize.



Multilayer perceptron
Back-propagation algorithm: supervised learning technique

In the forward phase, the synaptic weights of the network are fixed and the 
input signal is propagated through the network, layer by layer, until it reaches 
the output. 

In this phase, changes are confined to the activation potentials and outputs of 
the neurons in the network.



Multilayer perceptron
In the backward phase, an error signal is produced by comparing the output 
of the network with a desired response. 

The resulting error signal is propagated through the network, again layer by 
layer, but this time the propagation is performed in the backward direction. 

In this second phase, successive adjustments are made to the synaptic 
weights of the network. 

Calculation of the adjustments for the output layer is straightforward, but it is 
much more challenging for the hidden layers.



Multilayer perceptron
The local gradient  δj(n) depends on whether neuron j is an output node or a hidden node: 

Output node:   δj(n) equals the product of the derivative 
and the error signal, both of which are associated with neuron j

 Hidden node: δj(n)  equals the product of the associated derivative 
and the weighted sum of the s computed weights for the neurons in the next hidden or output layer 
that are connected to neuron j



Machine Learning
Instead of writing a program by hand for each specific task, we collect many 
examples that specify the correct output for a given input. 

 – A machine learning algorithm then takes these examples and produces a 
computational model that does the job. 

– The model produced by the learning algorithm may look very different from 
a typical hand-written program. It may contain millions of numbers. – If we do 
it right, the program works for new cases as well as the ones we trained it on. 
– If data changes, the model can change too by training on the new data



ML problems
 • Recognizing patterns: 

– Objects in real scenes – Facial identities or facial expressions – Spoken words 

• Recognizing anomalies: 

– Unusual sequences of credit card transactions – Unusual patterns of sensor 
readings in a nuclear power plant 

• Prediction: 

– Future stock exchange rates – Which movies will a person like? 



ML problems
• Machine learning already the preferred approach to 

– Speech recognition, Natural language processing 

– Computer vision – Medical outcomes analysis – Robot control 



Machine Learning
Training set: Training examples to pair the input with expected output.

Validation set: To estimate how well the model has been trained



Machine Learning
Problem Setting: 

• Set of possible instances X 

• Unknown target function f : X->Y 

• Set of function hypotheses H

Input: • Training examples {} of unknown target function f

Output: • Hypothesis h ∈ H that best approximates target function f



Machine Learning
Overfitting:

Training data T: errorT(h)

Entire distribution D of data: errorD(h)

Hypothesis h overfits training set if there is another hypothesis h’ such that

errort(h) < errort(h’) and errord(h) > errord(h’)



FPGA
A field programmable gate array is a semiconductor device on which the 
function can be defined after manufacturing. 

An FPGA enables us to program product features and functions, adapt to new 
standards, and reconfigure hardware for specific applications even after the 
product has been installed in the field.



When to use an FPGA
Hardware/software system codesign

Small size

Low Cost

Heat dissipation

Rapid development and prototyping of custom hardware products



FPGA
Common FPGA Applications:
Aerospace and Defense
Medical Electronics
ASIC Prototyping
Audio
Automotive
Real-Time Video Engine
Encoders
Displays
Switches and Routers
Consumer Electronics

And many more..



FPGA
Demand for high-performance computing is a hot topic

-Smart watch with tens of GPUs in addition to CPUs

-Next-generation base stations will need around 500 cores

-Computation demand of advanced driver assistance systems requires about 
40 cores



FPGA and AI
Intel recently revealed an FPGA accelerator that offers high computational 
power for developing AI-powered services

Intel sees FPGAs as the key to designing a new generation of products to 
address emerging customer workloads



FPGA and AI
FPGA,and GPUs are both good options to overcome problems where 
computational heterogeneity is key, competing with other solutions like 
supercomputing or HPC for acceleration

Each of them excels in one scope rather than another one, so it’s likely that 
most of them will be used in a field or another.


