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Abstract. Maximal planar graphs with vertex resp. edge colouring are
naturally casted as (deceiptively similar) institutions. One then tries to
embody Tait’s equivalence algorithms into morphisms between them,
and is lead to a partial redesign of those institutions. This paper aims
at introducing a few pragmatic questions which arise in this case study,
which also showcases the use of relational concepts and notations in the
design of the subject institutions.

Keywords: abstract model theory, institution, institution morphisms, relation al-
gebra, four colour theorem, graph colouring

1 Introduction

Institution morphisms are a lively, albeit controversial subject of debate in the
community of researchers who investigate abstract model-theoretic concepts and
methods [7] in computing.

The original definition for these structure maps [10] was soon to compete
with differently conceived, variously motivated proposals, such as the ”maps”,
”simulations”, ”transformations”, respectively found in [14,6,17], among (sev-
eral) others. Recent work [11] aims at systematic investigation of properties and
interrelations of these notions, that surely is a promising, useful effort.

So far, lesser attention seems to have been attracted by pragmatic questions
relating to institution morphisms, whatever sensible kind thereof, such as the
understanding of how do those maps affect the design of institutions, meant as
formalizations of given logical frameworks. This question is not necessarily to be
understood in a ”comparative” sense; that is to say, our expectation is that even
in straightforward cases where different notions of institution morphism have
essentially equivalent instances, it may well happen that institutions designed
without taking morphisms into account need to be (partially) redesigned when
the problem of mapping (relating, translating, structuring) them comes into play.
The present paper is aimed at presenting a little exercise of this kind. We start
with introducing and motivating the exercise idea.
? This research has been partially supported by MURST Grant prot. 2001017741 under

project ”Ragionamento su aggregati e numeri a supporto della programmazione e
relative verifiche” at the DMI Department of the University of Catania.



2 Giuseppe Scollo, March 2003

The Four Colour Theorem (4CT) is a paradigmatic case of potential ap-
plicability of methods and results that are offspring of research on translations
between logical frameworks. Here is why the 4CT offers an interesting case study
for translation concepts and methods relating to logical frameworks.

Our starting point is a view of the 4CT as a consistency theorem of finite,
ad-hoc logics of graph colouring. The plural form logics here is purposeful, since
a well-known result by Tait [19,20] proves the equivalence between the 4CT
with vertex colouring and the 3CT with edge colouring. The latter means proper
colouring of edges rather than vertices, where ”proper” is spelled out as the
condition that adjacent edges, i.e. at the border of a same triangular face, must
be assigned different colours, whereas adjacent vertices must be assigned different
colours by a proper vertex colouring.

Now, Tait’s equivalence comes equipped with a constructive proof, whereby
algorithms are exhibited that turn any given proper 4-colouring of vertices of
any given maximal planar graph into a proper 3-colouring of its edges, and
vice versa—see e.g. [8] for an outline of Tait’s algorithms. In this paper we use
somewhat simpler algorithms for graph colouring conversion, that exploit the
nice algebraic properties of the Klein 4-group, as presented in [1].

So, here’s our basic idea for an exercise aimed at testing practical impact of
institution morphisms, possibly in different flavours, into institution design in
the case study in question: 1) formalize maximal planar graph colouring by two
distinct institutions, respectively with vertex colourings and edge colourings as
models, and 2) (try to) cast Tait’s equivalence into a pair of converse morphisms
between the two institutions.

The first part of the exercise already raises institution design questions, e.g.
the choice of signature morphisms; on pragmatic grounds, one might like to have
such morphisms formalize edge contraction, in view of the relevant role played
by this operation in reducibility proofs [5], yet contraction doesn’t preserve max-
imality of planar graphs in all cases, which entails that the Set-valued sentence
functor ought to map those morphisms to partial functions. One may take the
design decision to formulate just vertex, resp. edge permutations as signature
morphisms, since these operations are of practical interest, too. This leads to a
straightforward solution of the first part of the exercise; in particular, sentences
in the institution with edge colouring have an amazing syntactic representation
by Matiyasevitch’s polynomials [12], whereby the number of proper colourings
of any given maximal planar graph is quickly found.

The second part of the exercise raises new design questions. Since the solution
of the first part was determined without taking mutual interpretability of the two
institutions into account, one shouldn’t be surprised at finding out that Tait’s
algorithms prove hard to get embodied into structure-preserving maps between
those institutions. Our redesign work in this respect seems quite instructive, but
is not included here because of space constraints. Here we work out a solution
to the first part of the exercise, where we also showcase the use of relational
concepts and notations, whereby one gets a pleasing conciseness and elegance in
their presentation.
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2 Graph colouring preliminaries

The first proof of the 4CT [2,3,4] raised controversial discussions due to its combi-
natorial complexity which, for the analysis of the nearly 2000 graphs involved, re-
quired the construction of a program—whose correctness was not proven though.
A new proof was obtained by [15], keeping the structure of the previous proof but
cutting down to 633 the number of graphs involved. The impression yet remains
that a simpler reason for the truth of this theorem may exist. One dreams of a
logical construction where combinatorics weigh no more than necessary, that is,
inherent to the problem rather than to specifics of the proof.
Notation
n: the finite ordinal consisting of n elements, viz. the natural numbers from 0
through n-1.
1n, 1′n, 0′n: resp. the universal, identity and diversity binary relations on n,
thus 0′n = 1n\1′n or, with standard relation-algebraic notation for the Boolean
complement operation: 0′n = 1′n

−1.
r˘ : relation-algebraic converse of r.
TV(n): the set of n+2-labeled n+2-vertex triangulations of the sphere.
TE(n): the set of 3n-labeled 3n-edge triangulations of the sphere.

3 Institution preliminaries

The classic definition of institution, already appearing in the paper introducing
this concept [9], will suffice for our purposes. Generalizations of this definition
were proposed later [10], base on twisted relation categories, that allow one to
choose one of set-structure or category-structure for sentences as well as for
models, the two choices being independent of each other. This gives rise to four
variants of the institution concept, while other variants have been proposed too,
referred to as ”close variants” in [11].

An institution is a 4-tuple I = (Sig, Sen, Mod, |=), with:

(i) Sig a category, whose objects are called signatures,
(ii) Sen:Sig→Set a functor, sending each signature Σ to the set Sen(Σ) of

Σ-sentences, and each signature morphism π:Σ1→Σ2 to the mapping
Sen(π):Sen(Σ1)→Sen(Σ2) that translates Σ1-sentences to Σ2-sentences,

(iii) Mod:Sigop→Cat a contravariant functor, sending each signature Σ to the
category Mod(Σ) of Σ-models, and each signature morphism π:Σ1→Σ2 to
the π-reduction functor Mod(π):Mod(Σ2)→Mod(Σ1),

(iv) |= : |Sig|→||Rel|| a1 |Sig|-indexed set of binary relations |=Σ ⊆ |Mod(Σ)|×Sen(Σ),
viz. a satisfaction relation betweenΣ-models andΣ-sentences for eachΣ∈|Sig|,
such that the following satisfaction condition holds for all π:Σ1→Σ2 ∈ ||Sig||,
Σ2-models M and Σ1-sentences ϕ:

Mod(π)(M) |=Σ1 ϕ ⇔ M |=Σ2 Sen(π)(ϕ)
1 Rel is the category of sets with binary relations as morphisms; |C| is the set of

objects of category C, while ||C|| is the set of morphisms of category C.



4 Giuseppe Scollo, March 2003

Notation
A few notational conventions will simplify the presentation.
We shall henceforth adopt the abbreviations: πϕ for Sen(π)(ϕ), and Mπ for

Mod(π)(M), where π:Σ1→Σ2 is a signature morphism, ϕ is a Σ1-sentence, and
M is a Σ2-model.

As usual, if a and b are objects in category C, then HomC(a,b) is the subset
of ||C|| which consists of the morphisms from a to b.

When considering different institutions, it proves convenient to decorate the
name of each element of the 4-tuple which an institution consists of, by adding
the institution name as first subscript.

4 A vertex colouring institution

Syntax will be abstract, exploiting the fact that institutions do not force one to
deal with concrete syntax. Signatures are just positive numbers, ranking maximal
planar graphs by their size, and we take the bijective relabelings of vertices as
signature morphisms. This restriction is a design decision, motivated as follows.

Each n>0 is the rank of the maximal planar graphs, or triangulations of the
sphere, that have n+2 vertices. Vertex colouring of such structures require that
each vertex be given a unique identity. To this purpose we consider vertices to
be uniquely labeled by the elements of finite ordinal n+2, for triangulations of
rank n. Bijective relabelings are thus just label permutations. The pragmatic
question arises as to what purpose could be served by non-bijective maps on
finite ordinals. On the one hand, loss of surjectivity appears useless, insofar as
it introduces labels in the morphism codomain that are not made use of to label
any vertex, according to the morphism image. On the other hand, though, loss
of injectivity would seem to be of some use, inasmuch it amounts to identify for-
merly distinct vertices, thus it could prove useful to formalize edge contraction—
whenever an edge connects two such vertices. This operation, however, does not
preserve maximality of planar graphs. This happens when a vertex of degree 3 is
opposite to the contracted edge, see e.g. fig. 1, where the dashed edge is subject
to contraction and its opposite vertices, both of degree 3, are circled.

Fig. 1. Edge contraction not preserving maximality of planar graphs

Since edge contraction decreases by one the degree of those vertices which are
opposite to the contracted edge, the resulting graph proves maximal in just one
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case, viz. when it is the smallest triangulation, which consists of three vertices
of degree 2 (no other triangulation has vertices of degree 2).

We must conclude that, if non-injective relabelings were admitted as signa-
ture morphisms, then the Set-valued sentence functor, giving the set of vertex-
labeled triangulations of rank n for each n>0, ought to map those morphisms
to partial functions, whereas only total functions are available as morphisms in
Set.

Signatures

|SigV | = N\{0}
HomSigV (n,n) = {π:n+2→n+2 | π is bijective}
HomSigV (m,n) = ∅ if m6=n

Sentences

Each θ∈TV(n) is represented by the symmetric quotient of a binary relation on

vertices, εθ
def
= ηθ/Sym, where ηθ is the irreflexive, symmetric edge relation of

θ, thus satisfies the relation-algebraic laws ηθ≤0′n+2, ηθ = ηθ˘ , while |ηθ| =
6n, but the Sym quotient turns ordered pairs into unordered ones, thus |εθ| =
3n. As a matter of notation, we write i εθ j or {i, j}∈εθ, rather than the more
cumbersome {(i, j), (j, i)}∈εθ, whenever {(i, j), (j, i)}⊆ηθ. We thus define:

SenV(n) = {εθ | θ∈TV(n)}

Sentence translation

If π∈HomSigV (n,n) and εθ∈SenV(n), then πεθ∈SenV(n), with

(πi) πεθ (πj) ⇔ i εθ j

Models

The model functor assigns to each signature n>0 the category of 4-colourings of
the n+2 vertices, with colour permutations as model morphisms:

|ModV(n)| = 4n+2, ||ModV(n)|| = {ρ∈44|ρ is bijective}

where a colour permutation ρ is a model morphism ρ:µ→µ′ whenever µ′= ρ◦µ.

Model reduction

If π:n+2→n+2∈HomSigV (n,n) and µ:n+2→4∈|ModV(n)|, then µπ∈|ModV(n)|,
with µπ(i)

def
= µ(πi), and ρπ

def
= ρ for all colour permutations ρ∈||ModV(n)||. This

makes model reduction functorial, with

ρ◦(µπ) = (ρ◦µ)π
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Satisfaction

In V, a n-model satisfies a n-sentence iff it is a proper vertex-colouring of that
triangulation, that is:

µ |=V,n εθ iff ∀i, j∈n + 2. iεθj ⇒ µi6=µj

A relation-algebraic formulation of this definition may exploit the ”oriented”edge
relation ηθ from which εθ is obtained as a quotient, and the view of the 4-
colouring map as a binary relation µ ⊆ n+2×4. Then we get:

µ |=V,n εθ iff µ ;̆ ηθ;µ ≤ 0′4

This definition complies with the satisfaction condition:

µπ |=V,n εθ ⇔ µ |=V,n πεθ

therefore V is an institution.

5 An edge colouring institution

Syntax will be somewhat more concrete, inspired by Matiyasevich’s polynomial
representation of triangulations of the sphere [12]. Signatures remain the same,
but we now take the bijective relabelings of edges as signature morphisms.

Signatures

|SigE | = |SigV | = N\{0}
HomSigE (n,n) = {π:3n→3n | π is bijective}
HomSigE (m,n) = ∅ if m6=n

Sentences

Sentences in SenE(n), ranged over by ψϑ, are represented by Matiyasevich’s
polynomials in product form:

ψϑ =
∏

tijk∈ϑ
(xi − xj)(xj − xk)(xk − xi)

where ϑ∈TE(n) and tijk is a triangular face of ϑ having edges labeled i, j, k in
clockwise order. We thus define:

SenE(n) = {ψϑ | ϑ∈TE(n)}

Sentence translation

If π∈HomSigE (n,n) and ψϑ∈SenE(n) represented as above, then πψϑ∈SenE(n),
with

πψϑ =
∏

tijk∈ϑ
(xπi − xπj)(xπj − xπk)(xπk − xπi)
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Models

The model functor assigns to each signature n>0 the category of 3-colourings of
the 3n edges, with colour permutations as model morphisms:

|ModE(n)| = 33n, ||ModE(n)|| = {ρ∈33|ρ is bijective}

where a colour permutation ρ is a model morphism ρ:ν→ν′ whenever ν′= ρ◦ν.

Model reduction

If π:3n→3n∈HomSigE (n,n) and ν:3n→3∈|ModE(n)|, then νπ∈|ModE(n)|, with

νπ(i)
def
= ν(πi), and ρπ

def
= ρ for all colour permutations ρ∈||ModE(n)||. This

makes model reduction functorial, with

ρ◦(νπ) = (ρ◦ν)π

Satisfaction

In E , a n-model satisfies a n-sentence iff it is a proper edge-colouring of that
triangulation, that is:

ν |=E,n ψϑ iff ∀i, j∈3n.(xi − xj) occurs in ψϑ ⇒ νi6=νj

A relation-algebraic formulation of this definition may use the binary relation of
”occurrence in ψϑ”, ξψϑ

≤13n: i ξψϑ
j iff (xi − xj) occurs in ψϑ. Then, by using

the view of a 3-colouring map as a binary relation ν ⊆ 3n×3, we get:

ν |=E,n ψϑ iff ν ;̆ ξψϑ
; ν ≤ 0′3

This definition complies with the satisfaction condition:

νπ |=E,n ψϑ ⇔ ν |=E,n πψϑ

therefore E , too, is an institution.

6 Tait’s equivalence

A triangulation admits a proper 4-colouring of its vertices if, and only if, it admits
a proper 3-colouring of its edges. This is Tait’s classical result [19,20], albeit
here stated in graph-theoretic terms rather than, as in its original formulation,
in terms of cubic map colourings. The equivalence is shown by exhibiting two
algorithms, which we are going to recast in graph-theoretic terms, that for any
given triangulation respectively turn any proper 4-colouring of its vertices into
a proper 3-colouring of its edges, and vice versa.

We take 4 as the set of colours for vertex-colouring and 4\1 that for edge-
colouring. Taking the latter rather than 3 somewhat simplifies the presentation of
Tait’s algorithms, thanks to the properties of an elegant, algebraic construction
which uses the Klein 4-group, as provided in [1]. We take 4 as the group carrier,
with 0 as its neutral element. Every element is self-inverse, and the binary group
operation +o further satisfies x+o y = z whenever {x, y, z} = 4\1. This defines
+o , since 0 +ox = x+o 0 = x+ox = 0 for all x∈4, by the previous conditions.
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4CT ⇒ 3CT

Let µ:n+2→4 be a proper 4-colouring of given triangulation θ∈TV(n). For each
edge x in θ, let µi 6=µj be the colours assigned by µ to the vertices connected by
x. Then their Klein sum µi+oµj is the colour assigned to edge x.

By the properties of the Klein 4-group, this colour is never 0 insofar as µi6=µj
(by assumption, µ is a proper colouring of the vertices of θ). Furthermore, any
two edges sharing a face get different colours since they share one vertex (thus
one addend of the Klein sums yielding their respective colours), whereas the
other two vertices they resp. join are coloured differently by µ, as they are the
ends of the third edge sharing the same face. We thus have a proper 3-colouring
of the edges of θ, with colours out of 4\1.

3CT ⇒ 4CT

The construction in the converse direction is a bit more complex. Let ν:3n→4\1
be a proper 3-colouring of given triangulation ϑ∈TE(n). Choose a vertex in the
triangulation as start-vertex, and assign it colour 0. Every other vertex is then
coloured by the Klein sum of the colours assigned by ν to the edges of any path
from the start-vertex to that vertex.

Of course, the specified construction is only sound if Klein summation of the
colours assigned by ν proves invariant for all paths joining any given pair of
vertices. This holds because (i) every element is self-inverse in the Klein group
and (ii) Klein summation of the colours assigned by ν along every circuit turns
out to be 0. A proof of this fact is worked out in [1] (pp. 22–23), for the colouring
of cubic maps, but it can be readily interpreted in our present setting, just as
follows.

Let S=
∑
νxi be the Klein sum of the colours assigned by ν to the edges of

a given circuit K, and consider those triangular faces which belong to one of the
two regions of the sphere having K as border (no matter which one). Since ν is
a proper 3-colouring with colours out of 4\1, the Klein sum of the colours of
the edges of any given triangular face is always 1 +o 2 +o 3=0. Summation over all
faces considered above must obviously yield 0 as well. Now, each edge in K is
counted only once in this summation, whereas each other edge is counted twice,
giving thus a null contribution to the summation since x+ox=0 for all x∈4. We
must thus conclude that summation over the edges in K alone must yield 0, viz.
S=0.

Finally, it is immediately seen that the 4-colouring of vertices specified above
is proper, since adjacent vertices have paths from the start-vertex that differ
by one edge only, and ν assigns a non-zero colour to this edge, whence the two
vertices get different colours.

One may wonder whether the present construction has exactly the previous
one as its inverse, for every given triangulation. That is to say, if one starts with
a proper 3-colouring ν of edges, gets a proper 4-colouring of vertices out of it
as specified here above, and then gives this as input to the previous algorithm,
does then this yield back the 3-colouring ν one started with?
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The answer is positive, and an almost similar exactness holds in the converse
direction, where one starts with a proper 4-colouring µ of vertices, and gets it
back if in the second, 3CT→4CT stage the start-vertex is chosen among those
which are assigned colour 0 by µ. The proof of these facts exploits the algebraic
properties of the Klein 4-group, and is left to the reader as an exercise.

7 Morphism-driven redesign of institutions

A basic obstacle makes it impossible to embody Tait’s algorithms into (what-
ever kind of) morphism between the V and E institutions presented above, and
that is: the lack of a non-trivial functorial mapping between their categories of
signatures. Although those categories share their objects, their signature mor-
phisms differ, and these prove hard to map. It’s seems worthwhile to review the
implicit reason for the choice of different signature morphisms in the design of
the aforementioned institutions.

The choice of signature morphisms for V was just the obvious one, as far as
abstract syntax for vertex colourings is concerned. Similarly, that for E was in-
spired by Matiyasevich’s polynomial representation of triangulations, where only
the naming of edges matter, thus it seemed fairly natural to take edge renamings
as the edge colouring counterpart of vertex renamings for vertex colouring, as
far as abstract syntax for edge colourings is concerned. This choice is actually
sentence independent, in that it only depends on the rank of the triangulation
(since every triangulation of given rank n has the same number of edges, that is
3n), therefore it was appropriate as a design choice for signature morphisms.

Our ”local” design choices of signature morphisms prove no longer appropri-
ate when a wider perspective is taken, that is to say, as soon as one needs to
know which vertices are connected by which edges—as it happens to be the case
with Tait’s algorithms, for example.

Now, as a concluding remark, we note that the situation whereby a structure
is first designed according to a local view of its purpose, and only later a wider
context of its operation comes into play, seems to be a fairly general trait of
human design activities. Since the main vehicle of context interaction on abstract
algebraic structures is the concept of structure-preserving map, or morphism, it
is hardly surprising to find out that context-driven redesign becomes morphism-
driven redesign in the case under study. A solution to this problem is worked out
in [18], where an isomorphism between the redesigned institutions is obtained.

8 Further work

Further exercise ideas, on the theme considered here, may be inspired by the
vast literature on graph colouring, that over the years has resulted in several
equivalent reformulations of the 4CT, see e.g. [16,13].
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